RELAZIONI

PRODOTTO CARTESIANO

Dati due insiemi A e B non vuoti, si chiama *prodotto cartesiano* di A e B, e si denota con il simbolo A x B, l'insieme di tutte le coppie ordinate (a,b) con $a \in A$ e $b \in B$.

Se A = B, il prodotto cartesiano $A \times A$ si indica anche con il simbolo A^2 .

RELAZIONE

Dati due insiemi A e B, si chiama relazione \Re ogni sottoinsieme di A x B.

Se $a \in A$ è in relazione con $b \in B$, allora si scrive $a \Re b$.

Se A = B si parla di *relazione binaria* nell'insieme A.

Una relazione binaria in un insieme non vuoto A può godere di particolari proprietà:

Proprietà riflessiva:

Una relazione binaria \Re in un insieme A è riflessiva se ogni elemento di A è in relazione con se stesso, cioè quando per ogni elemento $a \in A$ si ha: $a \Re a$.

Proprietà simmetrica:

Una relazione binaria \Re in un insieme A è simmetrica quando dal fatto che $a\Re b$, segue che $b\Re a$.

Proprietà antisimmetrica:

Una relazione binaria \Re in un insieme A è antisimmetrica quando da: $a\Re b$ e $b\Re a$ segue: a=b.

Proprietà transitiva:

Una relazione binaria \Re in un insieme A è transitiva se, qualunque siano $a,b,c \in A$, da: $a\Re b$ e $b\Re c$ segue: $a\Re c$.

RELAZIONE DI EQUIVALENZA

Una relazione binaria \Re in un insieme A è detta relazione di equivalenza se è riflessiva, simmetrica e transitiva.

Se \Re è una relazione di equivalenza, allora due elementi di A che sono in relazione si dicono equivalenti rispetto a quella relazione.

Partizione di un insieme:

Si dice che più sottoinsiemi non vuoti di un insieme A costituiscono una partizione di A, se ogni elemento di A appartiene ad uno ed uno solo dei sottoinsiemi considerati.

CLASSI DI EQUIVALENZA

Si chiama *classe di equivalenza* nell'insieme non vuoto A, secondo una relazione di equivalenza \Re , il sottoinsieme di A costituito da tutti gli elementi che sono equivalenti ad un dato elemento $a \in A$.

Ogni classe di equivalenza è un insieme di tutti gli elementi equivalenti tra loro. Ad ogni relazione di equivalenza in A, corrisponde una partizione di A in classi di equivalenza.

<u>Insieme quoziente</u>:

Si chiama insieme quoziente di un insieme A rispetto ad una relazione di equivalenza \Re , l'insieme che ha per elementi le classi di equivalenza di A rispetto ad \Re .

RELAZIONE D'ORDINE

Si chiama relazione d'ordine in un insieme A, una relazione binaria \Re in A che sia riflessiva, antisimmetrica e transitiva.

Si dice, in tal caso, che l'insieme A è ordinato dalla relazione $\mathfrak R$. Una generica relazione d'ordine viene di solito indicata, anziché con il simbolo $\mathfrak R$, con il simbolo " \leq ", in analogia all'ordinamento naturale dei numeri interi.

Ordine stretto:

```
Sia A ordinato dalla relazione "\leq". La relazione \Re definita da: "a è in relazione con b se: a \leq b e a \neq b si dice relazione di ordine stretto su A.
```

Ordini totale e parziale:

Una relazione d'ordine \Re in A è detta *relazione d'ordine totale*, se due qualsiasi elementi sono confrontabili, cioè:

 $\forall (a, b) \in A^2$ si ha: $a \Re b$ oppure $b \Re a$. In caso opposto, l'ordine è detto *parziale*.

Si noti che una funzione da A in B non è altro che una particolare relazione sugli insiemi A e B.